metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gang Zhu and Zongxun Tang*

Department of Chemistry, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China

Correspondence e-mail: tzxtq@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.009 Å R factor = 0.034 wR factor = 0.092 Data-to-parameter ratio = 12.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(1,10-phenanthroline- $\kappa^2 N, N'$)cadmium(II) pentafluorooxoniobate(V)

The crystal structure of the title compound, $[Cd(C_{12}H_8N_2)_2-(H_2O)_2][NbOF_5]$, consists of Cd^{II} complex cations and Nb^V complex anions. The Cd^{II} and Nb^V atoms both have a distorted octahedral geometry. The Nb-F bond *trans* to the Nb=O bond is significantly longer than the other four Nb-F bonds.

Received 5 September 2005 Accepted 22 September 2005 Online 28 September 2005

Comment

Out-of-center 'primary' electronic distortions are inherent to oxide fluoride anions of the early d⁰ transition metals. In the $[NbOF_{5}]^{2-}$ anion, the Nb^V atom deviates from the center of the octahedron toward the oxygen ligand, forming a short Nb=O bond and long *trans* Nb-F bond. The *trans*-directing property of the $[NbOF_{5}]^{2-}$ anion can be exploited when designing new materials that exhibit important structure-dependent properties such as piezoelectricity, second-order nonlinear optical activity and ferroelectricity (Heier *et al.*, 1998; Welk *et al.*, 2002). Here the synthesis, crystal structure and characterization of a mixed-metal complex $[Cd(C_{12}H_8N_2)_2(H_2O)_2]^{2+}\cdot[NbOF_5]^{2-}$, (I), which incorporates the $[NbOF_5]^{2-}$ anion, is reported.

The molecular structure of (I) is shown in Fig. 1. The crystal structure of (I) is built up of Cd^{II} complex cations and Nb^V complex anions. The Cd^{II} atom has an octahedral coordination geometry with two 1,10-phenanthroline (phen) and two water molecules. The Nb^V atom assumes a distorted octahedral coordination with five F atoms and one O atom. The Nb–F bond *trans* to the Nb=O bond is significantly longer than the other four Nb–F bonds in the same anion (Table 1). This feature was also observed in previously reported structures (Halasyamani *et al.*, 1996; Norquist *et al.*, 1999; Izumi *et al.*, 2005). The coordinated water molecules of the Cd^{II} complex cation form hydrogen bonds with the [NbOF₅]^{2–} anion. Some phen H atoms also interact with the [NbOF₅]^{2–} anion *via* C– H…F hydrogen bonds (Table 2).

 ${\rm (\!C\!\!\!\!C\!\!}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. All H atoms have been omitted.

Figure 2

The molecular packing of (I), viewed along the *a* axis. For clarity, all H atoms have been omitted. Dashed lines indicate $O-H\cdots F$ hydrogenbonding interactions.

Experimental

All reagents were of analytical grade from commercial sources and used without further purification. Nb₂O₅ (0.133 g, 0.5 mmol) was first dissolved in HF solution (1 ml, 42 wt% in H₂O) at 383 K for 2 h in a Teflon-lined stainless steel vessel. After the solution had been cooled to room temperature, $3CdSO_4$ ·8H₂O (0.257 g, 0.33 mmol), phen (0.496 g, 2.5 mmol) and water (15 ml) were added. The pH of the mixture was adjusted to about 6 using KOH solution. The mixture was then heated under autogenous hydrothermal conditions at 413 K for 3 d. The mixture was filtered, then the solution was allowed to evaporate slowly. After 5 d, colorless single crystals suitable for X-ray diffraction were obtained. The crystals were dried in air. Elemental analysis: found: C 40.31, H 2.78, N 7.87%; calculated for C₂₄H₂₀CdF₅N₄NbO₃: C 40.34, H 2.82, N 7.85%.

Crystal data

 $\begin{bmatrix} Cd(C_{12}H_8N_2)_2(H_2O)_2 \end{bmatrix} \begin{bmatrix} NbOF_5 \end{bmatrix}$ $M_r = 712.75$ Triclinic, $P\overline{1}$ a = 9.487 (4) Å b = 11.537 (5) Å c = 13.007 (5) Å $\alpha = 99.162$ (6)° $\beta = 109.646$ (6)° $\gamma = 100.661$ (5)° V = 1279.3 (9) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and w scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2002) $T_{min} = 0.650, T_{max} = 0.696$ 6750 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.004464 reflections 355 parameters H atoms treated by a mixture of independent and constrained refinement

Mo K α radiation Cell parameters from 2883 reflections $\theta = 2.2-27.2^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$ T = 298 (2) K Block, colorless $0.35 \times 0.33 \times 0.29 \text{ mm}$

 $D_x = 1.850 \text{ Mg m}^{-3}$

Z = 2

4464 independent reflections 3413 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 12$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.0456P)^2 \\ &+ 1.0033P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1 Selected bond lengths (Å).

Nb1-O3	1.764 (3)	Cd1-O2	2.279 (3)
Nb1-F4	1.882 (3)	Cd1-O1	2.296 (3)
Nb1-F3	1.903 (3)	Cd1-N1	2.317 (4)
Nb1-F2	1.935 (3)	Cd1-N3	2.324 (4)
Nb1-F1	1.966 (3)	Cd1-N4	2.364 (4)
Nb1-F5	2.046 (3)	Cd1-N2	2.364 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H25\cdots O3^{i}$	0.85 (4)	1.83 (4)	2.672 (5)	177 (5)
$O1-H26\cdots F1$	0.84 (3)	1.84 (3)	2.679 (5)	172 (6)
$O2-H27\cdots F5^{ii}$	0.85 (3)	1.74 (3)	2.582 (5)	171 (6)
$O2-H28\cdots F2$	0.83 (3)	2.12 (5)	2.851 (5)	146 (5)
O2−H28···F5	0.83 (3)	2.44 (3)	3.130 (5)	142 (5)
C11-H11···F5 ⁱⁱⁱ	0.93	2.52	3.427 (7)	166
$C12-H12\cdots F2^{iv}$	0.93	2.43	3.299 (7)	156
C13−H13···F3 ⁱⁱ	0.93	2.48	3.089 (7)	123
$C15-H15\cdots F3^{v}$	0.93	2.33	3.224 (8)	161

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) -x + 2, -y + 1, -z + 1; (v) x - 1, y, z - 1.

The water H atoms were located in a difference Fourier map and refined with the O-H bond length restrained to 0.85 (2) Å, and assigned fixed isotropic displacement parameters of 0.08 Å². Other H atoms were placed at calculated positions and refined as riding, with C-H = 0.93 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve

metal-organic papers

structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXTL* (Siemens, 1995).

We sincerely thank the Provincial Natural Foundation of Shaanxi for support.

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Halasyamani, P., Willis, M. J., Stern, C. L., Lundquist, P. M., Wong, G. K. & Poeppelmeier, K. R. (1996). *Inorg. Chem.* 35, 1367–1371.

- Heier, K. R., Norquist, A. J., Wilson, C. G., Stern, C. L. & Poeppelmeier, K. R. (1998). *Inorg. Chem.* **37**, 76–80.
- Izumi, H. K., Kirsch, J. E., Stern, C. L. & Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884–895.
- Norquist, A. J., Stern, C. L. & Poeppelmeier, K. R. (1999). Inorg. Chem. 38, 3448–3449.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Welk, M. E., Norquist, A. J., Arnold, F. P., Stern, C. L. & Poeppelmeier, K. R. (2002). *Inorg. Chem.* 41, 5119–5125.